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Conservation of Energy

4-1 What is energy?

In this chapter, we begin our more detailed study of the different aspects of
physics, having finished our description of things in general. To illustrate the ideas
and the kind of reasoning that might be used in theoretical physics, we shall now
examine one of the most basic laws of physics, the conservation of energy.

There is a fact, or if you wish, a law, governing all natural phenomena that
are known to date. There is no known exception to this law—it is exact so far as
we know. The law is called the conservation of energy. It states that there is a
certain quantity, which we call energy, that does not change in the manifold
changes which nature undergoes. That is a most abstract idea, because it is a
mathematical principle; it says that there is a numerical quantity which does not
change when something happens. It is not a description of a mechanism, or any-
thing concrete; it is just a strange fact that we can calculate some number and when
we finish watching nature go through her tricks and calculate the number again,
it is the same. (Something like the bishop on a red square, and after a number of
moves—details unknown—it is still on some red square. It is a law of this nature.)
Since it is an abstract idea, we shall illustrate the meaning of it by an analogy.

Imagine a child, perhaps "Dennis the Menace," who has blocks which are
absolutely indestructible, and cannot be divided into pieces. Each is the same as
the other. Let us suppose that he has 28 blocks. His mother puts him with his
28 blocks into a room at the beginning of the day. At the end of the day, being
curious, she counts the blocks very carefully, and discovers a phenomenal law—
no matter what he does with the blocks, there are always 28 remaining! This
continues for a number of days, until one day there are only 27 blocks, but a little
investigating shows that there is one under the rug—she must look everywhere
to be sure that the number of blocks has not changed. One day, however, the
number appears to change—there are only 26 blocks. Careful investigation in-
dicates that the window was open, and upon looking outside, the other two blocks
are found. Another day, careful count indicates that there are 30 blocks! This
causes considerable consternation, until it is realized that Bruce came to visit,
bringing his blocks with him, and he left a few at Dennis' house. After she has
disposed of the extra blocks, she closes the window, does not let Bruce in, and then
everything is going along all right, until one time she counts and finds only 25
blocks. However, there is a box in the room, a toy box, and the mother goes to
open the toy box, but the boy says "No, do not open my toy box," and screams.
Mother is not allowed to open the toy box. Being extremely curious, and somewhat
ingenious, she invents a scheme! She knows that a block weighs three ounces,
so she weighs the box at a time when she sees 28 blocks, and it weighs 16 ounces.
The next time she wishes to check, she weighs the box again, subtracts sixteen
ounces and divides by three. She discovers the following:
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There then appear to be some new deviations, but careful study indicates that the
dirty water in the bathtub is changing its level. The child is throwing blocks into
the water, and she cannot see them because it is so dirty, but she can find out how
many blocks are in the water by adding another term to her formula. Since the
original height of the water was 6 inches and each block raises the water a quarter
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of an inch, this new formula would be:

In the gradual increase in the complexity of her world, she finds a whole series of
terms representing ways of calculating how many blocks are in places where she
is not allowed to look. As a result, she finds a complex formula, a quantity which
has to be computed, which always stays the same in her situation.

What is the analogy of this to the conservation of energy? The most re-
markable aspect that must be abstracted from this picture is that there are no blocks.
Take away the first terms in (4.1) and (4.2) and we find ourselves calculating more
or less abstract things. The analogy has the following points. First, when we are
calculating the energy, sometimes some of it leaves the system and goes away,
or sometimes some comes in. In order to verify the conservation of energy, we
must be careful that we have not put any in or taken any out. Second, the energy
has a large number of different forms, and there is a formula for each one. These
are: gravitational energy, kinetic energy, heat energy, elastic energy, electrical
energy, chemical energy, radiant energy, nuclear energy, mass energy. If we total
up the formulas for each of these contributions, it will not change except for energy
going in and out.

It is important to realize that in physics today, we have no knowledge of what
energy is. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. However, there are formulas for calculating some
numerical quantity, and when we add it all together it gives "28"'—always the
same number. It is an abstract thing in that it does not tell us the mechanism or
the reasons for the various formulas.

4-2 Gravitational potential energy

Conservation of energy can be understood only if we have the formula for
all of its forms. I wish to discuss the formula for gravitational energy near the
surface of the Earth, and I wish to derive this formula in a way which has nothing
to do with history but is simply a line of reasoning invented for this particular
lecture to give you an illustration of the remarkable fact that a great deal about
nature can be extracted from a few facts and close reasoning. It is an illustration
of the kind of work theoretical physicists become involved in. It is patterned
after a most excellent argument by Mr. Carnot on the efficiency of steam engines.*

Consider weight-lifting machines—machines which have the property that
they lift one weight by lowering another. Let us also make a hypothesis: that
there is no such thing as perpetual motion with these weight-lifting machines.
(In fact, that there is no perpetual motion at all is a general statement of the law
of conservation of energy.) We must be careful to define perpetual motion.
First, let us do it for weight-lifting machines. If, when we have lifted and lowered
a lot of weights and restored the machine to the original condition, we find that
the net result is to have lifted a weight, then we have a perpetual motion machine
because we can use that lifted weight to run something else. That is, provided the
machine which lifted the weight is brought back to its exact original condition,
and furthermore that it is completely self-contained—that it has not received the
energy to lift that weight from some external source—like Bruce's blocks.

A very simple weight-lifting machine is shown in Fig. 4-1. This machine lifts
weights three units "strong." We place three units on one balance pan, and one
unit on the other. However, in order to get it actually to work, we must lift a
little weight off the left pan. On the other hand, we could lift a one-unit weight

* Our point here is not so much the result, (4.3), which in fact you may already know,
as the possibility of arriving at it by theoretical reasoning.
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by lowering the three-unit weight, if we cheat a little by lifting a little weight off
the other pan. Of course, we realize that with any actual lifting machine, we must
add a little extra to get it to run. This we disregard, temporarily. Ideal machines,
although they do not exist, do not require anything extra. A machine that we
actually use can be, in a sense, almost reversible: that is, if it will lift the weight of
three by lowering a weight of one, then it will also lift nearly the weight of one the
same amount by lowering the weight of three.

We imagine that there are two classes of machines, those that are not re-
versible, which includes all real machines, and those that are reversible, which of
course are actually not attainable no matter how careful we may be in our design
of bearings, levers, etc. We suppose, however, that there is such a thing—a
reversible machine—which lowers one unit of weight (a pound or any other unit)
by one unit of distance, and at the same time lifts a three-unit weight. Call this
reversible machine, Machine A. Suppose this particular reversible machine lifts
the three-unit weight a distance X. Then suppose we have another machine, Ma-
chine B, which is not necessarily reversible, which also lowers a unit weight a
unit distance, but which lifts three units a distance Y. We can now prove that Y
is not higher than X; that is, it is impossible to build a machine that will lift a
weight any higher than it will be lifted by a reversible machine. Let us see why.
Let us suppose that Y were higher than X. We take a one-unit weight and lower
it one unit height with Machine B, and that lifts the three-unit weight up a distance
V. Then we could lower the weight from Y to X, obtaining free power, and use
the reversible Machine A, running backwards, to lower the three-unit weight a
distance X and lift the one-unit weight by one unit height. This will put the
one-unit weight back where it was before, and leave both machines ready to be
used again! We would therefore have perpetual motion if Y were higher than X,
which we assumed was impossible. With those assumptions, we thus deduce that
Y is not higher than X, so that of all machines that can be designed, the reversible
machine is the best.

We can also see that all reversible machines must lift to exactly the same height.
Suppose that B were really reversible also. The argument that Y is not higher than
X is, of course, just as good as it was before, but we can also make our argument
the other way around, using the machines in the opposite order, and prove that
X is not higher than Y. This, then, is a very remarkable observation because it
permits us to analyze the height to which different machines are going to lift
something without looking at the interior mechanism. We know at once that if
somebody makes an enormously elaborate series of levers that lift three units a
certain distance by lowering one unit by one unit distance, and we compare it
with a simple lever which does the same thing and is fundamentally reversible,
his machine will lift it no higher, but perhaps less high. If his machine is re-
versible, we also know exactly how high it will lift. To summarize: every reversible
machine, no matter how it operates, which drops one pound one foot and lifts
a three-pound weight always lifts it the same distance, X. This is clearly a universal
law of great utility. The next question is, of course, what is XI

Suppose we have a reversible machine which is going to lift this distance X,
three for one. We set up three balls in a rack which does not move, as shown in
Fig. 4-2. One ball is held on a stage at a distance one foot above the ground. The
machine can lift three balls, lowering one by a distance 1. Now, we have arranged
that the platform which holds three balls has a floor and two shelves, exactly spaced
at distance X, and further, that the rack which holds the balls is spaced at distance
X, (a). First we roll the balls horizontally from the rack to the shelves, (b), and
we suppose that this takes no energy because we do not change the height. The
reversible machine then operates: it lowers the single ball to the floor, and it lifts
the rack a distance X, (c). Now we have ingeniously arranged the rack so that
these balls are again even with the platforms. Thus we unload the balls onto the
rack, (d); having unloaded the balls, we can restore the machine to its original
condition. Now we have three balls on the upper three shelves and one at the
bottom. But the strange thing is that, in a certain way of speaking, we have not
lifted two of them at all because, after all, there were balls on shelves 2 and/3
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before. The resulting effect has been to lift one ball a distance 3X. Now, if 3X
exceeds one foot, then we can lower the ball to return the machine to the initial
condition, (f), and we can run the apparatus again. Therefore 3 X cannot exceed
one foot, for if 3 X exceeds one foot we can make perpetual motion. Likewise,
we can prove that one foot cannot exceed 3X, by making the whole machine run
the opposite way, since it is a reversible machine. Therefore 3X is neither greater
nor less than a foot, and we discover then, by argument alone, the law that
X = ^ foot. The generalization is clear: one pound falls a certain distance in
operating a reversible machine; then the machine can lift p pounds this distance
divided by p. Another way of putting the result is that three pounds times the
height lifted, which in our problem was X, is equal to one pound times the distance
lowered, which is one foot in this case. If we take all the weights and multiply
them by the heights at which they are now, above the floor, let the machine operate,
and then multiply all the weights by all the heights again, there will be no change.
(We have to generalize the example where we moved only one weight to the case
where when we lower one we lift several different ones—but that is easy.)

We call the sum of the weights times the heights gravitational potential
energy—the energy which an object has because of its relationship in space, rela-
tive to the earth. The formula for gravitational energy, then, so long as we are
not too far from the earth (the force weakens as we go higher) is

It is a very beautiful line of reasoning. The only problem is that perhaps it is not
true. (After all, nature does not have to go along with our reasoning.) ,For example,
perhaps perpetual motion is, in fact, possible. Some of the assumptions may be
wrong, or we may have made a mistake in reasoning, so it is always necessary to
check. /; turns out experimentally, in fact, to be true.

The general name of energy which has to do with location relative to some-
thing else is called potential energy. In this particular case, of course, we call it
gravitational potential energy. If it is a question of electrical forces against which
we are working, instead of gravitational forces, if we are "lifting" charges away
from other charges with a lot of levers, then the energy content is called electrical
potential energy. The general principle is that the change in the energy is the force
times the distance that the force is pushed, and that this is a change in energy in
general:

We will return to many of these other kinds of energy as we continue the course.
The principle of the conservation of energy is very useful for deducing what

will happen in a number of circumstances. In high school we learned a lot of laws
about pulleys and levers used in different ways. We can now see that these "laws"
are all the same thing, and that we did not have to memorize 75 rules to figure it out.
A simple example is a smooth inclined plane which is, happily, a three-four-five
triangle (Fig. 4-3). We hang a one-pound weight on the inclined plan.e with a
pulley, and on the other side of the pulley, a weight W. We want to know how
heavy W must be to balance the one pound on the plane. How can we figure that
out? If we say it is just balanced, it is reversible and so can move up and down,
and we can consider the following situation. In the initial circumstance, (a),
the one pound weight is at the bottom and weight W is at the top. When W has
slipped down in a reversible way, we have a one-pound weight at the top and the
weight W the slant distance, (b), or five feet, from the plane in which it was before.
We lifted the one-pound weight only three feet and we lowered W pounds by
five feet. Therefore W = f of a pound. Note that we deduced this from the
conservation of energy, and not from force components. Cleverness, however, is
relative. It can be deduced in a way which is even more brilliant, discovered by
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Stevinus and inscribed on his tombstone. Figure 4-4 explains that it has to be
^ of a pound, because the chain does not go around. It is evident that the lower
part of the chain is balanced by itself, so that the pull of the five weights on one
side must balance the pull of three weights on the other, or whatever the ratio of
the legs. You see, by looking at this diagram, that W must be ^ of a pound.
(If you get an epitaph like that on your gravestone, you are doing fine.)

Let us now illustrate the energy principle with a more complicated problem,
the screw jack shown in Fig. 4-5. A handle 20 inches long is used to turn the screw,
which has 10 threads to the inch. We would like to know how much force would
be needed at the handle to lift one ton (2000 pounds). If we want to lift the ton
one inch, say, then we must turn the handle around ten times. When it goes around
once it goes approximately 126 inches. The handle must thus travel 1260 inches,
and if we used various pulleys, etc., we would be lifting our one ton with an un-
known smaller weight W applied to the end of the handle. So we find out that W
is about 1.6 pounds. This is a result of the conservation of energy.

Take now the somewhat more complicated example shown in Fig. 4-6. A rod
or bar, 8 feet long, is supported at one end. In the middle of the bar is a weight
of 60 pounds, and at a distance of two feet from the support there is a weight of
100 pounds. How hard do we have to lift the end of the bar in order to keep
it balanced, disregarding the weight of the bar? Suppose we put a pulley at one
end and hang a weight on the pulley. How big would the weight W have to be
in order for it to balance? We imagine that the weight falls any arbitrary dis-
tance—to make it easy for ourselves suppose it goes down 4 inches—how high
would-the two load weights rise? The center rises 2 inches, and the point a quarter
of the way from the fixed end lifts 1 inch. Therefore, the principle that the sum of
the heights times the weights does not change tells us that the weight W times
4 inches down, plus 60 pounds times 2 inches up, plus 100 pounds times 1 inch
has to add up to nothing:

Thus we must have a 55-pound weight to balance the bar. In this way we can work
out the laws of "balance"—the statics of complicated bridge arrangements, and so
on. This approach is called the principle of virtual work, because in order to apply
this argument we had to imagine that the structure moves a little—even though
it is not really moving or even movable. We use the very small imagined motion
to apply the principle of conservation of energy.

4-3 Kinetic energy

To illustrate another type of energy we consider a pendulum (Fig. 4-7).
If we pull the mass aside and release it, it swings back and forth. In its motion,
it loses height in going from either end to the center. Where does the potential
energy go? Gravitational energy disappears when it is down at the bottom;
nevertheless, it will climb up again. The gravitational energy must have gone into
another form. Evidently it is by virtue of its motion that it is able to climb up again,
so we have the conversion of gravitational energy into some other form when it
reaches the bottom.

We must get a formula for the energy of motion. Now, recalling our arguments
about reversible machines, we can easily see that in the motion at the bottom
must be a quantity of energy which permits it to rise a certain height, and which
has nothing to do with the machinery by which it comes up or the path by which
it comes up. So we have an equivalence formula something like the one we wrote
for the child's blocks. We have another form to represent the energy. It is easy to
say what it is. The kinetic energy at the bottom equals the weight times the height
that it could go, corresponding to its velocity: K.E. = WH. What we need is
the formula which tells us the height by some rule that has to do with the motion
of objects. If we start something out with a certain velocity, say straight up, it
will reach a certain height; we do not know what it is yet, but it depends on the
velocity—there is a formula for that. Then to find the formula for kinetic energy
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for an object moving with velocity V, we must calculate the height that it could
reach, and multiply by the weight. We shall soon find that we can write it this way:

Of course, the fact that motion has energy has nothing to do with the fact that
we are in a gravitational field. It makes no difference where the motion came from.
This is a general formula for various velocities. Both (4.3) and (4.6) are approxi-
mate formulas, the first because it is incorrect when the heights are great, i.e.,
when the heights are so high that gravity is weakening; the second, because of the
relativistic correction at high speeds. However, when we do finally get the exact
formula for the energy, then the law of conservation of energy is correct.

4-4 Other forms of energy

We can continue in this way to illustrate the existence of energy in other forms.
First, consider elastic energy. If we pull down on a spring, we must do some work,
for when we have it down, we can lift weights with it. Therefore in its stretched
condition it has a possibility of doing some work. If we were to evaluate the sums
of weights times heights, it would not check out—we must add something else
to account for the fact that the spring is under tension. Elastic energy is the
formula for a spring when it is stretched. How much energy is it? If we let go,
the elastic energy, as the spring passes through the equilibrium point, is converted
to kinetic energy and it goes back and forth between compressing or stretching
the spring and kinetic energy of motion. (There is also some gravitational energy
going in and out, but we can do this experiment "sideways" if we like.) It keeps
going until the losses—Aha! We have cheated all the way through by putting
on little weights to move things or saying that the machines are reversible, or that
they go on forever, but we can see that things do stop, eventually. Where is the
energy when the spring has finished moving up and down? This brings in another
form of energy: heat energy.

Inside a spring or a lever there are crystals which are made up of lots of atoms,
and with great care and delicacy in the arrangement of the parts one can try to
adjust things so that as something rolls on something else, none of the atoms do
any jiggling at all. But one must be very careful. Ordinarily when things roll,
there is bumping and jiggling because of the irregularities of the material, and the
atoms start to wiggle inside. So we lose track of that energy; we find the atoms are
wiggling inside in a random and confused manner after the motion slows down.
There is still kinetic energy, all right, but it is not associated with visible motion.
What a dream! How do we know there is still kinetic energy? It turns out that
with thermometers you can find out that, in fact, the spring or the lever is warmer,
and that there is really an increase of kinetic energy by a definite amount. We call
this form of energy heat energy, but we know that it is not really a new form, it
is just kinetic energy—internal motion. (One of the difficulties with all these
experiments with matter that we do on a large scale is that we cannot really
demonstrate the conservation of energy and we cannot really make our reversible
machines, because every time we move a large clump of stuff, the atoms do not
remain absolutely undisturbed, and so a certain amount of random motion goes
into the atomic system. We cannot see it, but we can measure it with thermom-
eters, etc.) 

There are many other forms of energy, and of course we cannot describe them
in any more detail just now. There is electrical energy, which has to do with push-
ing and pulling by electric charges. There is radiant energy, the energy of light,
which we know is a form of electrical energy because light can be represented as
wigglings in the electromagnetic field. There is chemical energy, the energy which
is released in chemical reactions. Actually, elastic energy is, to a certain extent,
like chemical energy, because chemical energy is the energy of the attraction of
the atoms, one for the other, and so is elastic energy. Our modern understanding
is the following: chemical energy has two parts, kinetic energy of the electrons
inside the atoms, so part of it is kinetic, and electrical energy of interaction of the
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electrons and the protons—the rest of it, therefore, is electrical. Next we come to
nuclear energy, the energy which is involved with the arrangement of particles
inside the nucleus, and we have formulas for that, but we do not have the funda-
mental laws. We know that it is not electrical, not gravitational, and not purely
chemical, but we do not know what it is. It seems to be an additional form of
energy. Finally, associated with the relativity theory, there is a modification of
the laws of kinetic energy, or whatever you wish to call it, so that kinetic energy
is combined with another thing called mass energy. An object has energy from its
sheer existence. If I have a positron and an electron, standing still doing nothing
—never mind gravity, never mind anything—and they come together and dis-
appear, radiant energy will be liberated, in a definite amount, and the amount
can be calculated. All we need know is the mass of the object. It does not depend
on what it is—we make two things disappear, and we get a certain amount of
energy. The formula was first found by Einstein; it is E = mc2.

It is obvious from our discussion that the law of conservation of energy is
enormously useful in making analyses, as we have illustrated in a few examples
without knowing all the formulas. If we had all the formulas for all kinds of
energy, we could analyze how many processes should work without having to go
into the details. Therefore conservation laws are very interesting. The question
naturally arises as to what other conservation laws there are in physics. There
are two other conservation laws which are analogous to the conservation of
energy. One is called the conservation of linear momentum. The other is called
the conservation of angular momentum. We will find out more about these later.
In the last analysis, we do not-understand the conservation laws deeply. We do
not understand the conservation of energy. We do not understand energy as a
certain number of little blobs. You may have heard that photons come out in
blobs and that the energy of a photon is Planck's constant times the frequency.
That is true, but since the frequency of light can be anything, there is no law that
says that energy has to be a certain definite amount. Unlike Dennis' blocks, there
can be any amount of energy, at least as presently understood. So we do not under-
stand this energy as counting something at the moment, but just as a mathematical
quantity, which is an abstract and rather peculiar circumstance. In quantum
mechanics it turns out that the conservation of energy is very closely related to
another important property of the world, things do not depend on the absolute
time. We can set up an experiment at a given moment and try it out, and then do
the same experiment at a later moment, and it will behave in exactly the same
way. Whether this is strictly true or not, we do not know. If we assume that it
is true, and add the principles of quantum mechanics, then we can deduce Jhe
principle of the conservation of energy. It is a rather subtle and interesting thing,
and it is not easy to explain. The other conservation laws are also linked together.
The conservation of momentum is associated in quantum mechanics with the
proposition that it makes no difference where you do the experiment, the results
will always be the same. As independence in space has to do with the conserva-
tion of momentum, independence of time has to do with the conservation of
energy, and finally, if we turn our apparatus, this too makes no difference, and so
the invariance of the world to angular orientation is related to the conservation
of angular momentum. Besides these, there are three other conservation laws,
that are exact so far as we can tell today, which are much simpler to understand
because they are in the nature of counting blocks.

The first of the three is the conservation of charge, and that merely means
that you count how many positive, minus how many negative electrical charges
you have, and the number is never changed. You may get rid of a positive with
a negative, but you do not create any net excess of positives over negatives. Two
other laws are analogous to this one—one is called the conservation of baryons.
There are a number of strange particles, a neutron and a proton are examples,
which are called baryons. In any reaction whatever in nature, if we count how
many baryons are coming into a process, the number of baryons* which come out

* Counting  antibaryons  as —1 baryon.
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will be exactly the same. There is another law, the conservation of leptons. We
can say that the group of particles called leptons are: electron, mu meson, and
neutrino. There is an antielectron which is a positron, that is, a —1 lepton.
Counting the total number of leptons in a reaction reveals that the number in and
out never changes, at least so far as we know at present.

These are the six conservation laws, three of them subtle, involving space and
time, and three of them simple, in the sense of counting something.

With regard to the conservation of energy, we should note that available
energy is another matter—there is a lot of jiggling around in the atoms of the
water of the sea, because the sea has a certain temperature, but it is impossible
to get them herded into a definite motion without taking energy from somewhere
else. That is, although we know for a fact that energy is conserved, the energy
available for human utility is not conserved so easily. The laws which govern
how much energy is available are called the laws of thermodynamics and involve
a concept called entropy for irreversible thermodynamic processes.

Finally, we remark on the question of where we can get our supplies of energy
today. Our supplies of energy are from the sun, rain, coal, uranium, and hydrogen.
The sun makes the rain, and the coal also, so that all these are from the sun.
Although energy is conserved, nature does not seem to be interested in it; she
liberates a lot of energy from the sun, but only one part in two billion falls on the
earth. Nature has conservation of energy, but does not really care; she spends
a lot of it in all directions. We have already obtained energy from uranium;
we can also get energy from hydrogen, but at present only in an explosive and
dangerous condition. If it can be controlled in thermonuclear reactions, it turns
out that the energy that can be obtained from 10 quarts of water per second is equal
to all of the electrical power generated in the United States. With 150 gallons of
running water a minute, you have enough fuel to supply all the energy which is
used in the United States today! Therefore it is up to the physicist to figure out
how to liberate us from the need for having energy. It can be done.
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